Nesting behaviour influences species-specific gas exchange across avian eggshells
نویسندگان
چکیده
Carefully controlled gas exchange across the eggshell is essential for the development of the avian embryo. Water vapour conductance (G(H2O)) across the shell, typically measured as mass loss during incubation, has been demonstrated to optimally ensure the healthy development of the embryo while avoiding desiccation. Accordingly, eggs exposed to sub-optimal gas exchange have reduced hatching success. We tested the association between eggshell G(H2O) and putative life-history correlates of adult birds, ecological nest parameters and physical characteristics of the egg itself to investigate how variation in G(H2O) has evolved to maintain optimal water loss across a diverse set of nest environments. We measured gas exchange through eggshell fragments in 151 British breeding bird species and fitted phylogenetically controlled, general linear models to test the relationship between G(H2O) and potential predictor parameters of each species. Of our 17 life-history traits, only two were retained in the final model: wet-incubating parent and nest type. Eggs of species where the parent habitually returned to the nest with wet plumage had significantly higher G(H2O) than those of parents that returned to the nest with dry plumage. Eggs of species nesting in ground burrows, cliffs and arboreal cups had significantly higher G(H2O) than those of species nesting on the ground in open nests or cups, in tree cavities and in shallow arboreal nests. Phylogenetic signal (measured as Pagel's λ) was intermediate in magnitude, suggesting that differences observed in the G(H2O) are dependent upon a combination of shared ancestry and species-specific life history and ecological traits. Although these data are correlational by nature, they are consistent with the hypothesis that parents constrained to return to the nest with wet plumage will increase the humidity of the nest environment, and the eggs of these species have evolved a higher G(H2O) to overcome this constraint and still achieve optimal water loss during incubation. We also suggest that eggs laid in cup nests and burrows may require a higher G(H2O) to overcome the increased humidity as a result from the confined nest microclimate lacking air movements through the nest. Taken together, these comparative data imply that species-specific levels of gas exchange across avian eggshells are variable and evolve in response to ecological and physical variation resulting from parental and nesting behaviours.
منابع مشابه
Eggshell pigment composition covaries with phylogeny but not with life history or with nesting ecology traits of British passerines
No single hypothesis is likely to explain the diversity in eggshell coloration and patterning across birds, suggesting that eggshell appearance is most likely to have evolved to fulfill many nonexclusive functions. By controlling for nonindependent phylogenetic associations between related species, we describe this diversity using museum eggshells of 71 British breeding passerine species to exa...
متن کاملThe evolution of eggshell cuticle in relation to nesting ecology.
Avian eggs are at risk of microbial infection prior to and during incubation. A large number of defence mechanisms have evolved in response to the severe costs imposed by these infections. The eggshell's cuticle is an important component of antimicrobial defence, and its role in preventing contamination by microorganisms in domestic chickens is well known. Nanometer-scale cuticular spheres that...
متن کاملAncient DNA reveals extreme egg morphology and nesting behavior in New Zealand's extinct moa.
New Zealand's extinct flightless moa radiated rapidly into a large number of morphologically diverse species, which produced an equally large range of egg morphologies. The exact number of moa species, as well as the characteristics of the eggs they laid, remains contentious. Moreover, like most extinct species, we understand little about their nesting and incubation habits. We used a modified ...
متن کاملEvolution of eggshell structure during rapid range expansion in a passerine bird
1. Environmental factors such as temperature, humidity and partial oxygen pressure can affect avian eggshell structure because gas exchange across the shell must allow sufficient water loss while preventing dehydration of the embryo. Studies of species with known chronology of colonization of novel environments provide a powerful insight into the relative importance of ecological factors shapin...
متن کاملThe First Occurrence in the Fossil Record of an Aquatic Avian Twig-Nest with Phoenicopteriformes Eggs: Evolutionary Implications
BACKGROUND We describe the first occurrence in the fossil record of an aquatic avian twig-nest with five eggs in situ (Early Miocene Tudela Formation, Ebro Basin, Spain). Extensive outcrops of this formation reveal autochthonous avian osteological and oological fossils that represent a single taxon identified as a basal phoenicopterid. Although the eggshell structure is definitively phoenicopte...
متن کامل